Consider PEX for buried, gray-water uses

The durability and flexibility of PEX piping makes it an excellent choice for buried/in-slab applications.

The durability and flexibility of PEX piping makes it an excellent choice for buried/in-slab applications.

In the past 15 years, PEX (cross-linked polyethylene) piping has become an increasingly popular product in the commercial building sector due to its flexibility; superior resistance to freeze damage, scaling, and corrosion; and stable material costs.
   Though PEX is a great product to replace metallic piping in the typical overhead applications, its real benefit comes with in-slab and below-grade installations where the product’s flexibility and continuous lengths can be utilized.

Below-grade Applications
For below-grade applications, certain PEX products can be directly buried in soil environments free of solvents (check with local code for burial approvals). For installations requiring a watertight piping system, look to a pre-insulated product that offers nominal diameters of 3/4 to 4 in., with a corrugated HDPE outer jacket and inner closed-cell PEX-foam insulation.
   Ideal building types for below-grade installations are single-level, retail-type layouts with large footprints and grouped fixtures. The PEX piping is typically routed from the building’s mechanical room through a trench to the various wet walls throughout the building. Installers can cut considerable amounts of time from projects by eliminating the need for lifts to install overhead hangers and supports.

In-slab Applications
Some PEX piping can also be installed directly in concrete. It’s best to take advantage of the flexibility of PEX piping to arrange the piping scheme so that fittings are out of the slab. However, if fittings must be buried in the slab, they must be approved for concrete burial. Another option is to use PEX products with an HDPE corrugated outer jacket. This jacket protects the piping from being damaged during the construction process.
   In-slab PEX piping is ideal for many applications, ranging from single-level churches and schools to high-rise multifamily buildings where pipe can be placed in the concrete slab, reducing the amount of overhead work required.

Gray-Water Applications
PEX products also are an excellent option for reclaimed water (or gray water) applications. In a gray-water system, water from sinks and showers is diverted to a holding tank where it goes through a filtering process. PEX reclaimed-water pipe distributes the filtered, reclaimed water from the holding tank to laundry, toilets and irrigation systems. For gray-water applications, reclaimed-water pipe is available in 1/2-, 3/4-, and 1-in. nominal sizes. Pipe for use with reclaimed water should be listed to NSF 14 (noted by cNSFus marking on the pipe) and NSF-rw for non-potable applications.
   For more assistance with using PEX for these types of applications, use the Uponor Plumbing Design Assistance Manual (PDAM), which is available at no cost at

Daniel Worm is associate product manager for plumbing at Uponor Inc., Apple Valley, MN. He can be reached at

How The New VTannual Rating Affects Daylighting

If you’re involved with daylighting commercial buildings, you need to know about optically complex fenestration systems and the new VTannual rating.
   Optically complex fenestration systems are technologically advanced products that use specially engineered light-bending or light-reflecting elements to harvest the wavelengths of light that we want to use to illuminate building interiors. One key example of these new types of optically complex fenestration systems is the tubular daylighting device (TDD), which collects and admits natural light into interiors more effectively than conventional daylighting options.
   Featuring progressive technologies, these optically complex systems use stringent refractive, reflective, and filtering elements to selectively harvest natural light over the course of a year. Compared with traditional skylights, windows, and less-complex TDDs, state-of-the-art TDDs use advanced optics and materials to deliver higher quality visible light with more consistent illuminance, regardless of sky condition or climate. They also significantly reduce the potential for shifting light patterns, glare, and heat transfer issues.

Current rating issues
So how do building designers know which optically complex system offers the best performance for their particular projects? Currently, visible light transmittance (VT) is a factor commonly used by architects, engineers, and contractors to predict a daylighting system’s light output. It’s also a performance rating that is measured using testing and rating protocols established by the National Fenestration Rating Council (NFRC), Greenbelt, MD.
   The issue with the VT rating is that it doesn’t sufficiently account for the light-collection control that can be designed into optically complex fenestration products. These systems are engineered to filter out undesirable wavelengths—such as fabric-fading ultraviolet, heat-carrying infrared, and overpowering midday sunlight—so the collection and transmission of light varies, by design, throughout the day and year. This variance makes product comparisons difficult and the simple VT measurement a poor performance indicator.

Devising a new rating
Measuring simple VT involves direct-normal testing where a single beam of light is aimed into the optically complex system from directly overhead. There are two problems with the test. First, natural light transmits through a surface at a variety of angles throughout the day (depending on the sun’s position in the sky), not just in a perpendicular fashion. Second, this method doesn’t allow the benefits of technology to come into play, such as dome optics or optical tubing reflectance. Every daylighting system performs relatively the same when using this testing protocol, so it does not offer an accurate depiction of a product’s real-life performance. As a result, it doesn’t provide a valuable resource to the consumer when trying to select the best product for a particular application.
   To select the best daylighting system for a given project, commercial building designers must be able to compare product performance with respect to daylighting configuration and geographic location as well as climatic and seasonal variations. Until now, the lack of standard performance metrics that adequately address this new breed of daylighting systems has made the simple comparison and selection of optically complex systems virtually impossible.
   Enter the NFRC Tubular Daylighting Device Task Group. Consisting of members from the NFRC, including technical representatives from the Lawrence Berkeley National Laboratory (Berkeley, CA), testing laboratories, and several major TDD manufacturers, this collaboration has worked for more than four years to develop a new performance testing protocol for collecting and rating visible transmittance data for optically complex systems.
   The outcome of the group’s efforts was a new annualized visual transmittance rating protocol (VTannual), which was implemented by the NFRC in late 2013. The new VTannual protocol offers a more meaningful performance rating that provides an extremely accurate view of how an optically complex system will perform in real-life situations. It will allow building designers to make a true “apples to apples” comparison between daylighting products so they can choose the best system to meet their project goals.

This illustration is a graphical representation of solar angles defined and utilized within the NFRC VTannual rating protocol. Illustration courtesy of NFRC.

This illustration is a graphical representation of solar angles defined and utilized within the NFRC VTannual rating protocol. Illustration courtesy of NFRC.

Calculating VTannual
To calculate the VTannual rating, a specially designed apparatus measures a daylighting product’s:

  • Annual visible transmittance: the annualized amount of daylight transferred through a surface into an interior space.
  • Zonal time (ZT) weighting factors, which are a function that determines the percentage of time the sun spends within a specific patch of sky.

   The apparatus does this by collecting clear-sky, visible-light-transmittance data for a series of vertical planes of data in 10-deg. increments. The measurements span vertical angles for solar altitudes (angles of the sun above the horizon) ranging from 20 to 70 deg. at three specific solar azimuth angles (the compass direction from which the sunlight is coming, i.e., east or west relative to due south) of 0, 30, and 60 deg.

Figure 3 (Figure 2 is not shown) is a depiction of solar altitude angles as measured with respect to the opening of the moveable test apparatus. Illustration courtesy of NFRC.

Figure 3 (Figure 2 is not shown) is a depiction of solar altitude angles as measured with respect to the opening of the moveable test apparatus. Illustration courtesy of NFRC.

   Ultimately, 18 distinct points of paired data are collected, then factored in with the historical position of the sun for a preselected site location which, for the NFRC rating, will be a standard Middle America location at 40 deg. north latitude, i.e., Boulder, CO. These can then be used to generate functional, annualized, visible-light-transmittance ratings for any site location in the world, accounting for how an optically complex product is designed to selectively increase or reduce light collection for specific times of the day and year.
   It’s important to note that the VTannual rating is based on clear-sky conditions only. Thus, the new rating will be less useful for people who live in predominantly overcast or cloudy climates.

Obtaining a rating
To obtain a VTannual rating, a manufacturer works with a third party testing organization to conduct the test. The results are then sent to an independent inspection agency to review and verify the test data and rating results. If the data are deemed to be accurate and conform with the testing standard, an NFRC label with the rating is issued to the manufacturer for use on its packaging. The data are also uploaded to the NFRC Certified Product Database.
   The VTannual rating is designated as a single number that represents the annual average clear-sky visible transmittance of a daylighting product for a standard Middle America location. This accounts for the actual time-weighted path the sun travels during the course of the year, and is expressed as a number between 0 and 1. This differs from the static direct-normal VT rating, also expressed as a number between 0 and 1, which, for a skylight, represents the ideal maximum light transmittance of a product when the sun is directly overhead, a condition that never happens for all but a few hours each year for sites within the tropics near the equator.

Taking a new approach
Optically complex systems are forcing a paradigm shift in commercial-building design. With their ability to collect, filter, and redirect daylight, they have made it easier for natural light to become the primary daytime illumination source, with electric lighting taking a supplementary role. These systems are not your average TDDs, but fully vetted lighting equipment that has been proven to perform.
   The adoption of the VTannual rating protocol is a crucial part of this new approach to commercial lighting. It is a significant advancement in how fenestration products are evaluated because it allows those involved with building design to make educated decisions based on a product’s real-life performance, and eventually the data collected in the NFRC VTannual rating process may even allow annual performance values to be calculated relative to the building’s actual geographic location.
   Architects can now make direct comparisons, which allows them to specify and select the best product for the application. They can even calculate how much useful light is available, making it possible to estimate how much electric light is needed to make up for any deficiencies during any hour of the year. Look for the new performance rating on NFRC labels starting in the Fall of 2014.

Neall Digert, Ph.D., MIES, is vice president of product enterprise, Solatube International Inc., Vista, CA.

Five Myths of Tubular Daylighting Devices

Are these myths preventing you from specifying/purchasing tubular daylighting devices for your commercial facility?

Michael Sather, commercial marketing manager at Solatube International Inc., Vista, CA

Michael Sather, commercial marketing manager at Solatube International Inc., Vista, CA

Many people are familiar with the concept of tubular daylighting devices (TDDs), often generically referred to by more informal names such as solar tubes, sun tunnels, light pipes, or tube lights. The general concept is simple: A dome, attached to a roof with a self-mounted flashing or mounted on a curb, captures sunlight, transfers it into the building through a highly reflective tube, and delivers it into the interior space through a diffuser lens mounted at the ceiling level or at the end of the tube in an open ceiling.
   In the past 13 years, TDDs have revolutionized the way buildings are illuminated. When applied correctly, a building can be fully daylit using only the natural light supplied by the TDDs for 90% or more of the occupied hours of the year, relying on electric lights only as a backup during extremely overcast days or at night.
   That said, how do you know if TDDs are the right choice for daylighting your project? What key aspects should you consider when selecting the best TDD for a specific application? To help answer these questions and give you a better understanding of this product category, let’s explore five myths of TDDs.

When applied correctly, a building can be fully daylit using only the natural light supplied by the TDDs for 90% or more of the occupied hours of the year, relying on the electric lights only as a backup during extremely overcast days or at night.

When applied correctly, a building can be fully daylit using only the natural light supplied by the TDDs for 90% or more of the occupied hours of the year, relying on the electric lights only as a backup during extremely overcast days or at night.

Myth 1: Tubular daylighting devices are only for residential applications or small spaces.
The original TDDs that appeared in the U.S. market in the early 1990s were strictly designed for residential spaces. In the past two decades, the TDD category grew to rival and eventually surpass traditional skylights for residential applications.
   Building on that residential-market success, the world’s first commercial-grade TDD appeared on the scene in the year 2000. This new technology boasted a 21-in.-dia. tube and a transition box for a grid ceiling system, which allowed a round tube to accommodate a square diffuser, simply by replacing a 2 x 2-ft. ceiling tile. Open-ceiling models also debuted at this time and featured a diffuser lens attached directly to the tube bottom. As a result, the approach to daylighting commercial buildings was greatly simplified and the daylight fixture concept was born.

Specular reflectance, which refers to a concentrated bundle of light transferred down the tube through the diffuser, is the key factor in determining how effective a TDD is at delivering light to an interior.

Specular reflectance, which refers to a concentrated bundle of light transferred down the tube through the diffuser, is the key factor in determining how effective a TDD is at delivering light to an interior.

Myth 2: Tubular daylighting devices are only for the top floor.
Specular reflectance, which refers to a concentrated bundle of light transferred down the tube through the diffuser, is the key factor in determining how effective a TDD is at delivering light to an interior. It is often confused with total reflectance, which refers to scattered light that is reflected in every direction. Total reflection is not an indicator of throughput since this would include light reflecting back up the tube.
   When daylight moves through a TDD, it reflects (or bounces) off the tubing surface. With each bounce, a small amount of that light is lost. For each 90-deg. turn, only about 5% of the light is lost. This makes possible tube runs of great distances, spanning multiple floors, running down chases in the walls, and using multiple 90-deg. turns to be able to deliver daylight deep into the interior of multistory buildings.

When daylight moves through a TDD, it reflects (or bounces) off the tubing surface. With each bounce, a small amount of that light is lost. For each 90-deg. turn, approximately only 5% of the light is lost.

When daylight moves through a TDD, it reflects (or bounces) off the tubing surface. With each bounce, a small amount of that light is lost. For each 90-deg. turn, approximately only 5% of the light is lost.

Myth 3: Tubular daylighting devices are only effective at certain times of the day or year.
Factors affecting seasonal consistency are a combination of specular reflectance, dome optics, spectral selectivity, color temperature maintenance (CTM), and solar heat gain. Lower end TDDs will have a greater difference in daily and seasonal variation due to a lack of the above mentioned properties.
   Advanced TDDs offer daily and seasonal consistency by incorporating dome technologies with passive internal reflectors or Fresnel-lens optics to help efficiently collect low-angle sunlight. This can greatly increase performance in the early morning or late day. During the winter months, when the sun is low in the sky, this is an especially important consideration in Northern latitudes.

Myth 4: Tubular daylighting devices are unpredictable.
While dome optics and tubing material will play a major role in the predictability and consistency of a TDD, you must also take into account the overall design. Even the most advanced TDDs can be designed incorrectly into a space. If you use too many units, the results can be overwhelming; if you use too few, the results can be disappointing. Most TDD manufacturers offer daylight dimming devices that provide total control over the amount of daylight entering the space.

Myth 5: All tubular daylighting devices are the same.
This statement is equivalent to saying all cars are the same. To ensure you select the right TDD for your particular project needs, there are three main considerations: the manufacturer, the product, and the partner:

  • The manufacturer. Significant differences exist in the product offerings and core focus of companies manufacturing TDDs. Some manufacturers specialize in TDDs as their sole business, whereas other companies may only offer TDDs as a small part of their overall product line.
  • The product. Be sure to specify a product that meets the needs of the space. Most TDD manufacturers will offer a wide range of models and component options to create the right configuration for the specific application and climate.
  • The partner. Once a manufacturer is selected, it is probably best to make sure there is a factory-trained distributor or representative to assist with the project. Most TDD manufacturers will have a partner who works with you at a local level from project conception through completion to help you meet your daylighting goals and stay within your budget. These companies typically offer installation services as well as installation training for subcontractors to ensure your project is a success.

Michael Sather is the commercial marketing manager at Solatube International Inc., Vista, CA.

Ask Questions, Then Design Lighting

Lighting design should be part of the initial facility design phase to ensure effective illumination and energy savings.

Cheryl Ford, marketing manager for OSRAM Sylvania, Danvers, MA.

Cheryl Ford, marketing manager for OSRAM Sylvania, Danvers, MA.

The intended use for a building and the owner’s design goals not only affect the layout, finishes, and furnishings, but have a significant impact on lighting needs and energy costs. Unfortunately, lighting often is not discussed in the early design stages for new and major renovation projects. If lighting is a part of the early discussions, it is much more likely that the best possible luminaires will be chosen to fit the style of the building and its intended use.
   Discussing lighting early will also help ensure the building’s design can accommodate the desired luminaires and controls to achieve the lowest energy and maintenance cost without sacrificing lighting quality. Before specifying lighting, answer the following questions.
   Who is the end user?
   Is the building owned by a company for its own use or is the space being leased to multiple tenants? For businesses, branding by way of unique building design and layout plays a part in establishing that brand. In addition, exterior and interior lighting are equally important for the safety and well being of workers, customers, and clients. If a building is to be occupied by a single company, it is easier to minimize the number of luminaire types. For leased spaces, tenants often want the space constructed to meet their requirements, and this includes lighting. Lease agreements vary, but tenants often are required to pay utilities on the leased space, so work with them to install the most energy-efficient lighting possible.
   What is the desired style or look?
   Aesthetically pleasing lighting can be modern, contemporary or traditional, and there is a variety of luminaires from which to choose. For an unobtrusive modern look, recessed flat-panel, recessed indirect, or architectural recessed 1×4, 2×2, or 2×4 luminaires can provide a very clean look and uniformly lit spaces. For a more contemporary look, single pendant-mount luminaires can be geometrical, adding an artistic look to the space. There are also more traditional long linear runs of indirect/direct pendant-mount luminaires with an up-light and down-light component providing extremely low-glare lighting. In addition, these luminaires light the ceiling, brightening the look of the space.
   You do not need to sacrifice on the aesthetics of a luminaire just to save energy. State-of-the-art high-efficiency, long-life fluorescent lamp and ballast systems are available in many styles, providing energy savings as high as 40%, compared with standard T8 fluorescent units. Luminaires using LED systems that offer energy savings as high as 50% when compared to conventional fluorescent systems are available.
   How will spaces be used?
   How a space is to be used determines required lighting levels. In the past, however, many interiors have been over lit. Fortunately, the Illuminating Engineering Society of North America (IESNA), New York, has established recommended lighting levels for specific tasks, and following these guidelines will reduce over-illumination and wasted energy.
   The type of space will also dictate the need for additional lighting controls, and this may influence your luminaire choice. Many LED luminaires come with integrated controls for installation ease. Also, layers of light, especially for hospitality and classroom lighting, provide the flexible lighting typically desired. For office environments, the use of task lighting allows overhead lighting levels to be scaled back, reducing energy usage.
   What are the latest energy code requirements?
   ASHRAE 90.1 and California Title 24 have maximum power-density requirements (W/sq. ft.) and mandatory control provisions for interior and exterior applications. The latest versions of each have additional mandatory control requirements. Alterations affecting more than 50% of the lighting load must conform to the codes.
   ASHRAE 90.1-2010 requires space control for enclosed areas with at least one control step between 30% and 70% of full power. Exceptions include corridors, public lobbies, restrooms, stairwells, storage rooms, and electrical/mechanical areas. Various auto-off requirements also are established, particularly for parking garages.
   California Title 24 2013 has added more multi-level control requirements, specified by space type for areas greater than 100 sq. ft. Auto-off requirements are also established for interior and exterior spaces and parking garages. There also are specific requirements for daylighted zones and use of occupancy sensing or auto scheduling. Demand response is now required for all non-residential buildings of more than 10,000 sq. ft.
   When does daylighting make sense?
   There is trend in commercial buildings to use more natural light and provide occupants with outdoor views for health and well-being benefits, as well as to save energy. However, to make daylighting effective, the building design and window selection are extremely important. North/south-facing windows and windows with the proper glazing to minimize glare need to be incorporated into the design. In new-building construction, light shelves and skylights improve daylight use. A window-shading system can effectively control the amount of sun that enters a space. Light sensors and 0- to-10-V dimming is the best way to reduce the luminaire light level in response to available daylight.
   Which lighting technology?
   The cost to install LED lighting instead of conventional fluorescent and high-intensity-discharge technology has decreased immensely in the past several years. LED luminaire performance, controllability, and color quality is equivalent to many fluorescent systems, so for new construction LEDs may be the best choice. For retrofit projects, high-efficiency, long-life fluorescents may be the least expensive option, but do not rule out LED retrofit solutions that use the existing luminaire housing. Utility rebates are available for DLC-qualified (DesignLights Consortium, Lexington, MA) LED luminaires and for high-efficiency and supersaver fluorescent systems, reducing the cost to install the most efficient lighting.
   Lighting can help shape a business and its outcomes in very subtle ways. When done correctly, it can dazzle people, provide comfort, and improve productivity. Quality lighting does not need to break the budget, and it can be very energy efficient. In evaluating lighting options, look at the total cost of ownership. Hire a lighting designer to make sure the best lighting system is designed for the facility.

Cheryl Ford is a marketing manager for OSRAM Sylvania, Danvers, MA. She has
more than 30 years of lighting experience; has held various positions in engineering, marketing, and sales; and is a NCQLP lighting certified professional. Watch for regular lighting columns from Cheryl at

Load Share to Heat Pools, Water

Instead of exhausting building heat generated during daily activity, a thermal-load-sharing system can direct that heat to pools, spas, and water heaters.

Jay Egg, Egg Geothermal

Jay Egg, Egg Geothermal

Spring is here, and the cooling season is quickly approaching. Pools around the country that have been decommissioned during the winter are likely to stay that way well into June, unless some type of pool heating is implemented.

But heating open bodies of water with conventional HVAC heat sources can be a rather expensive undertaking, particularly in northern climates, forcing designers and owners to look for a relatively inexpensive heat source. Let’s look at the options.

Solar-thermal is the most energy efficient and renewable source for potable water and pool heating, but solar depends on cooperative weather. Cloudy and cool days can mean a cold pool, necessitating the need for backup heating sources much of the year.

Fossil fuel heating of potable water, pools, and spas is an old favorite. First cost is relatively low, but that comes at a higher price environmentally and monetarily as you move forward. In addition to high costs for propane and other fuels, safety issues are involved when fossil fuels are used as a heat source.

Electric-resistance heating uses raw electricity to warm heating elements over which the water passes, providing a clean and safe water-heating alternative. But it can be extremely expensive. Using the coefficient of performance (COP) rating system (used internationally) for heating equipment, electric heating has a COP of 1.0, meaning that 1 unit of heat is provided for each unit of electricity, a one-to-one ratio, or 100% efficient in the COP rating system.

Air-source heat pumps, designed for pool and potable-water heating, are environmentally friendly and pump outside air into a pool or hot-water tank. However, they too rely somewhat on cooperative weather conditions, i.e., air temperatures being warm enough to facilitate efficient heat extraction. Air-source heat-pump efficiencies are in the 3.0 COP (300% efficient) range.

For swimming pool and spa heating, the best scenario is attained with geothermal-sourced water-to-water heat pumps, pulling heat from a dependable, steady, and renewable energy source; the earth. Geothermal heat pumps can be about 5.0 COP (500% efficient).

Outside temperatures fluctuate with the changing seasons, but underground temperatures don’t change nearly as dramatically, thanks to the mass of the earth. Some 4 to 6 ft. below the ground, the temperature remains relatively constant year round (about 50 F to 75 F in the U.S.).

A geothermal-sourced water-to-water heat pump, which can work in tandem with a geothermal HVAC system, typically consists of water-sourced heat pump and a buried system of pipes called an earth loop, and/or a pump to send fluid to a reinjection (Class V thermal exchange process) well. This geothermal source can be shared between the building’s HVAC and water-heating systems.

Think of it like this: While providing power to run your building’s HVAC cooling system, you are also providing the energy to run computers, lighting, servers, copiers, and domestic water heating. Then the building’s HVAC system must use power to remove the heat created by all of these internal gains, on top of the occupant loads (one occupant presents a load of 1,200 BTU each hour). You pay for energy twice to remove this waste heat through the process of cooling your building. Why not channel that heat to where it’s needed?

Among the benefits that you can realize from a geothermal HVAC system is the ability to channel and use this waste heat energy. That’s because, unlike widely used cooling towers and air-sourced cooling equipment (those that have an outside condenser that discharges waste heat), geothermal systems discharge the heat through a liquid heat exchanger (such as with a chiller-cooling tower combination). The heat is entrained in the discharge water line. Most manufacturers of geothermal heat pumps even have a factory installed hot water generator available. This option gives you two extra connections, labeled DHW (Domestic Hot Water) “In” and “Out,” that may be connected to almost any hot-water tank.

There are thousands of geothermal heated pools around in the US. There is a good chance that the local YMCA, hotel, health club, or community pool near you already has geothermal sourced pool heating. Surprisingly, many of these still have air sourced cooling systems that could be converted to geothermal (and likely will be) during the normal course of HVAC equipment attrition and upgrade. When specifying a geothermal HVAC system, consider including a thermal-load-sharing system to make maximum use of building heat.

Jay Egg is a geothermal consultant, writer, and the owner of EggGeothermal, Kissimmee, FL. He has co-authored two textbooks on geothermal HVAC systems published by McGraw-Hill Professional. He can be reached at

Slash Geothermal Costs With Free Money

Couple inherent energy cost savings with incentive dollars to make a huge dent in the cost of a geothermal system.

Jay Egg, Egg Geothermal

Jay Egg, Egg Geothermal

The economics of purchasing and operating a geothermal HVAC system are not solely reliant on paying notable upfront costs and then counting on energy-cost savings to recoup those costs in the first few years of operation. In fact, much of the upfront costs can be quickly offset by taking advantage of a variety of available incentives.

To start the discussion, let’s simply list the various incentives that are available to residential and commercial consumers. Residential options are included for comparison purposes. Here is a list of the most readily available options:

  • 30% Federal tax credit, uncapped.


  • 10% Federal tax credit, uncapped
  • Maximum Accelerated Cost Recovery System (MACRS)–benefit as high as 38%, uncapped.

Commercial and residential:

  • Property Assessed Clean Energy (PACE) funding funds entire geothermal HVAC projects for property taxpayers
  • State and local government incentives (varies by region)
  • Utility incentives and funding (On-Bill financing)
  • Geothermal utility services (ORCA Energy).

Many of the incentives/benefits cover the entire cost of a new geothermal HVAC system or retrofit/improvements to an HVAC system. These improvements can include the following:

  • Geothermal source (ground loop/pond loop/Class V well system or standing column well
  • Geothermal (water sourced) chiller/heat pump equipment
  • Ductwork, distribution piping, and specialties
  • 100% fresh-air equipment (geothermal water sourced)
  • Controls and indoor air quality (IAQ) items
  • Electrical service connections
  • Excavation & recovery costs
  • Engineering drawings, permits, and fees.

Federal incentives for geothermal HVAC systems that are currently in effect through the year 2016 include different criteria for commercial and residential.

If the project is residential, all that is required is that the client be a taxpayer and fill out IRS form 5695. The customer will realize 30% of the entire cost of the geothermal HVAC system in direct tax credits. The credits can be rolled over from year-to-year until the full incentive is earned. For example, a $30,000 HVAC system, purchased in 2014, will generate a $9,000 tax credit on the very next tax filing, through 2016.

The reason I included residential is for comparison. If the customer is a commercial entity who owns the commercial property, that entity receives a 10% Federal tax credit. That doesn’t appear to be favorable until the rest of the story is considered. When MACRS is applied, the geothermal HVAC system is depreciated in an accelerated manner from 27 yr. down to an abbreviated 5 yr. A 50% bonus depreciation is also applied to the first year. This 50% bonus has been extended and modified several times since 2008, most recently in January 2013 by the American Taxpayer Relief Act of 2012.

By taking advantage of the commercial/corporate geothermal HVAC tax credits and incentives, an expenditure of $1 million for a geothermal HVAC system will net tax incentives amounting to $480,000 over 5 yr. under current program guidelines. A 48% tax incentive for corporate clients is clearly favorable to the 30% tax credit for residential clients.

PACE is a Federal program, currently available in 31 states, designed for residential and commercial consumers. The program works best for commercial customers in participating areas. PACE is arranged by local government and pays for 100% of the project’s costs. Payback is accomplished through property-tax assessments. Though PACE is also available for the residential sector, the housing market reverses in 2010 brought that funding to a halt. Commercial PACE programs have accelerated and, as of February 2013, 16 commercial PACE programs in seven states are accepting applications to fund geothermal HVAC and other energy-efficient projects.

On-Bill financing provides a way for consumers to repay the capital costs of retrofit geothermal HVAC systems as part of their monthly electric bill.

Electrical service providers have made energy-efficiency retrofits available to consumers for years. The utility companies use their reserves or third-party capital providers to cover the cost of the efficiency upgrade projects. Consumers/businesses are then obliged to pay the costs back over a period of 20 yr. on their electric utility invoice. These programs seem to be gaining favor and continue to grow, as shown by House Bill 1428, MD., “Public Utilities-Geothermal Heating and Cooling On-Bill Financing-Pilot Program,” initiated in February, 2013.

Third-party capital providers have emerged with programs such as “In-Electric Rate Funding,” introduced in January 2013 by Constellation Energy.

Geothermal Utility Services are a promising program that has been party to a market penetration of almost 40% of heating system replacements in Canada in 2011 according to the Canadian GeoExchange Coalition. Geothermal Utility Services, such as Canadian based GeoTility, and its US sister company, OrcaEnergy, cover the cost of the exterior geothermal ground heat exchanger/well system. The consumer then pays a one-time connection fee and a predetermined monthly utility charge to the geothermal utility. The consumer is then only concerned with the cost of the geothermal heat pump/chiller upgrade and is still eligible for many of the other programs mentioned, including the federal tax incentives (U.S.).

But, how much more do geothermal HVAC systems cost than standard HVAC systems? That subject is covered in the Commercial Conversation podcast, “Breaking New Ground With Geothermal.”

Briefly, standard HVAC systems may cost about $3,000/ton, compared with geothermal HVAC systems that may cost $5,000 to $6,000/ton at the lower range tonnage (less than 500 tons). As the tonnage goes up, the cost per ton goes down until, in many cases, a geothermal HVAC system can have a competitive first cost comparable to a standard HVAC system.

In other words, when a commercial entity takes advantage of federal incentives for geothermal HVAC systems, they are realizing essentially a 48% cost reduction benefit on the entire mechanical system. One can be reasonably assured that the resultant first cost of the system can actually end up being substantially less than the first cost of a standard HVAC system.

However, the federal incentives and energy efficiency of a geothermal HVAC system, though compelling, are secondary to some of the other tangible benefits of going geothermal. Consider the following advantages that can be attained only with geothermal:

  • Elimination of outdoor equipment
  • Storm proofing (geothermal equipment is sheltered from storm events)
  • Longevity of system (a result of all indoor equipment)
  • Elimination of fresh water consumption (from commercial cooling towers)
  • Elimination of fossil-fuel consumption (on-site)
  • Superior comfort in heating and cooling modes (more on this in future columns)
  • Enabling thermal load sharing (swimming pools, domestic hot water, HVAC re-heat)
  • System efficiency, as high as 40 EER.

You can see that we are in a favorable market with the many incentives for the implementation of commercial geothermal HVAC technologies. It does take a little legwork on the part of the contractor, engineer, and consumer. Construction professionals that up-sell to geothermal HVAC have all of these resources available to them.

Jay Egg is a geothermal consultant, writer, and the owner of EggGeothermal, Kissimmee, FL. He has co-authored two textbooks on geothermal HVAC systems published by McGraw-Hill Professional. He can be reached at

Geothermal a leader in the second green movement?

Jay Egg, Egg Geothermal

Jay Egg, Egg Geothermal

What’s the real essence of “going green?” What are we really trying to do? Is it for the environment? How about saving money? Is it to create jobs? Help the economy? Is it about looking “Green”? Or is it about just wanting to “do the right thing”?

If you remember the energy crisis of the 70s, you’ll likely remember the 50-mpg Volkswagen Rabbit diesel. When gasoline was abundant and cheap again, we entered the age of mammoth SUVs, because supply went up and prices stayed down. Now look at us.

With natural gas prices recently at an all-time low ($2.75/million Btu), heating and related costs for commercial buildings has reached an all-time low. Geothermal HVAC systems used to be clearly cost effective against natural gas—and they still are against other fuel sources.

But history has shown us that we should not be fooled by artificially low energy prices. In a 2012 article, Sustainable Plant reports, “Low natural gas prices won’t last, because way too many folks are making far too many plans to cash in.” When energy prices do increase, many of us will have no choice but to pay the increased costs until we can afford to upgrade to a better standard.

In a report that came out from the Energy Information Administration (EIA), a division of the U.S. Department of Energy (DOE), Washington on Dec. 10, 2013, the Short-Term Energy Outlook is that the “EIA expects that the Henry Hub natural gas spot price, which averaged $2.75 per million British thermal units (MMBtu) in 2012, will average $3.68 per MMBtu in 2013 and $3.84 per MMBtu in 2014.” That’s a 34% increase between 2012 and 2013 followed by an additional 4% increase between 2013 and 2014.

Green movement number two is on the way, and for more reasons than just increasing energy costs.

Solar photovoltaic (PV) systems continue to appear everywhere. Electrical production through wind generators is becoming a more common sight in certain areas. Hydropower has been used for generations. Geothermal “hot rock” power generation is growing.

Geothermal HVAC systems don’t get much press. You can’t see them, because equipment is all inside. You can’t hear them; the classic “out of sight –out of mind” scenario. Maybe that’s why we don’t hear much about the technology.

Geothermal HVAC systems remove as much as four times the energy consumption from the electrical grid per dollar spent than photovoltaic systems can add to the electrical grid per dollar spent.* Businesses desiring the elusive “net zero” status come closer to making that a reality by first implementing geothermal HVAC technologies. When considering a reduction in energy consumption costs, geothermal needs to be the first choice. The real hero in net-zero applications is summed up by the statement, “Giant arrays of solar panels produce power, while tankless hot water and geothermal air conditioning reduce demand.” from the news report, “Downtown St. Pete boasts new, ‘net-zero’ building.” You’ll find that the majority of buildings boasting a “net zero” energy goal are employing geothermal HVAC systems.

The number one reason for going green might be reduction of energy consumption of any type. The more peak load we can take off of the electrical grid, the fewer power plants we need. But are people buying into it? According to a new McGraw-Hill Construction study released on November 13, 2013 at the International Summit at the Green Build Conference and Expo, San Francisco, “Green building has become a long-term business opportunity with 51% of study firms planning more than 60% of their work to be green by 2015, up from 28% of firms in 2012.”

Another point in the study is that in 2008, the motivating factor of green building was “…doing the right thing (42%)”. Now the top reasons for doing green construction are “…client demand (35%) and market demand (33%)—two key business drivers of strategic planning.” With green building projected to double between years 2012 and 2015, there can be no doubt that “green movement number two” is underway. The question is, what green/sustainable technologies are going to be increasingly employed?

On November 11, 2013, a press release by Carrier (a subsidiary of United Technologies, and the largest manufacturer of HVAC products in the world) in the Wall Street Journal said, “Carrier Plans Joint Venture with Bosch to Strengthen Geothermal and Water-Source Heat Pump Offerings.” By all appearances, Bosch and Carrier see geothermal HVAC as the next big thing in “green.”

Let me know your plans – are you planning geothermal HVAC projects in the future? Why or why not? I’ll be sure to address your comments in future columns.

The Author
Jay Egg is a geothermal consultant, writer, and the owner of EggGeothermal. He has co-authored two textbooks on geothermal HVAC systems, published by McGraw-Hill Professional. He can be reached at

*Based on installed cost of $5.90/Watt from the report “Tracking the Sun VI, An Historical Summary of Installed Price of Photovoltaics, July 2013 Lawrence Berkeley National Laboratory” when compared with the installed cost of electrically powered geothermal heating and cooling ($6,000/ton) with a coefficient of performance of 4.0.

New Commercial Conversation Podcast on Education

The Commercial Building Products editors have added a new Commercial Conversation podcast. The new discussion is with architect Amy Stein, MGA Partners Architects, Philadelphia, and focuses on education-facility design, how it’s being affected by technology, the demand for “green” facilities, security, power delivery, and several other factors that affect new and renovated school facilities. Stein is a talented and experienced architect who specializes in education and historical structures.
   In addition, Commercial Conversation offers four other podcasts related to commercial-building design and construction. Look for a new podcast approximately every two weeks. Be sure to subscribe to Commercial Conversation so you’ll be notified when a new podcast is made available.

Commercial Conversation podcasts

Commercial Conversation is a new podcast series from the editors of Commercial Building Products. Twice monthly we will post a podcast in which editorial director Gary Parr discusses commercial-construction issues with industry experts. Two podcasts are now available for listening:

New Engineering Center for Mitsubishi HVAC

MitsubishiMitsubishi Electric Cooling & Heating (Mitsubishi Electric) has opened an industry-first Engineering Center in Duluth, GA. The Mitsubishi Electric Cooling & Heating Engineering Center is the only dedicated facility in the U.S. geared toward developing split-ductless and variable-refrigerant-flow (VRF) technology solutions specifically for the North American market.
   “Mitsubishi Electric Cooling & Heating’s parent corporation, Mitsubishi Electric, Tokyo, realizes there is enormous potential in the North American market for products based on split-ductless and VRF technology,” said Bill Rau, senior vice president and general manager, Mitsubishi Electric Cooling & Heating.
   The Engineering Center houses Mitsubishi Electric application support, as well as the company industry and government relations departments. By housing these groups in a single building, Mitsubishi Electric can accelerate domestic product development.